컴퓨터/Python
pandas csv to xlsx / pandas xlsx query to xlsx
풍경소리^^
2021. 1. 3. 20:38
============================================================================
pandas csv to xlsx
sheet_name
skiprows
----------------------------------------------------------------------------
import pandas as pd
# openpyxl 설치해야 됩니다 pip install openpyxl
# read_file = pd.read_excel (r'data/★전체장부.xlsm', sheet_name='데이터')
# read_file.to_csv (r'data/★전체장부.csv', index = None, header=True)
df = pd.read_excel("data/★전체장부.xlsm",sheet_name="데이터")
# df = pd.read_excel("data/★전체장부.xlsm",sheet_name="데이터",skiprows=1)
# df = pd.to_excel("data/★전체장부.xlsm", sheet_name="stock")
# df.dropna()
custom = df.query("거래처 == '서울'")
print(custom)
custom.to_excel("data/stock.xlsx", sheet_name="stock", index=False)
============================================================================
pandas query like *포함*
----------------------------------------------------------------------------
import pandas as pd
# openpyxl 설치해야 됩니다 pip install openpyxl
# read_file = pd.read_excel (r'data/★전체장부.xlsm', sheet_name='데이터')
# read_file.to_csv (r'data/★전체장부.csv', index = None, header=True)
df = pd.read_excel("data/★전체장부.xlsm",sheet_name="데이터")
# df = pd.read_excel("data/★전체장부.xlsm",sheet_name="데이터",skiprows=1)
# df = pd.to_excel("data/★전체장부.xlsm", sheet_name="stock")
# df.dropna()
# custom = df.query("거래처 == '서울'")
custom = df.query("거래처.str.contains('서울')")
print(custom)
custom.to_excel("data/stock.xlsx", sheet_name="stock", index=False)
============================================================================
filter column items
----------------------------------------------------------------------------
import pandas as pd
# openpyxl 설치해야 됩니다 pip install openpyxl
# read_file = pd.read_excel (r'data/★전체장부.xlsm', sheet_name='데이터')
# read_file.to_csv (r'data/★전체장부.csv', index = None, header=True)
df = pd.read_excel("data/★전체장부.xlsm",sheet_name="데이터")
# df = pd.read_excel("data/★전체장부.xlsm",sheet_name="데이터",skiprows=1)
# df = pd.to_excel("data/★전체장부.xlsm", sheet_name="stock")
# df.dropna()
# print(df.columns)
filter_df=df.filter(items=['년도', '월', '일','담당','위치', '거래처', '성명', '입금', '지출'])
# book = df.query("거래처 == '서울'")
book = filter_df.query("거래처.str.contains('서울')")
print(book)
book.to_excel("data/stock.xlsx", sheet_name="stock", index=False)